Programovatelné logické pole

Programovatelné logické pole jsou široce využívanou a efektivní cestou pro realizaci rozsáhlých kombinačních a sekvenčních logických obvodů. Jejich hlavní výhodou je vysoký stupeň integrace obvodu, který tak soustřeďuje v jednom pouzdře všechny prvky nutné pro běh obvodu. Počet ekvivalentních hradel (tzn. kolika hradly je možno obvod nahradit při plném využití obvodu) se pohybuje od několika set až do několika milionů. Rychlost obvodů se běžně pohybuje okolo 5 ns. Vnitřní propojení mezi jednotlivými prvky obvodu a tedy jeho funkce je programovatelná. Programování se provádí na PC návrhem schéma vnitřního zapojení v grafické podobě pomocí standardních symbolů známých z běžné logiky nebo textově v jazyce VHDL. Některé obvody umožňují programování již osazených obvodů přímo na desce plošného spoje bez nutnosti vyjímání obvodu nebo speciálního programátoru.

Obr. 1 - Rozložení prvků testovací desky

Generování hodinové frekvence, která je pro výukové účely nastavena na 36 Hz, je zajištěno časovačem 555.

Úkoly:

- 1) Realizujte 16. bitový čítač hodinové frekvence generátoru 555 a jeho výstup připojte na LED. Vstupní frekvenci čítače vydělte 2 pomocí klopného obvodu typu D
- 2) Takto vytvořený čítač naprogramujte do hradlového pole a ověřte jeho funkci

Postup realizace

A) Nakreslení schéma

V programovacím prostředí *Xilinx Project Navigator* vytvořte nový projekt (schéma) pro obvod XC9536 XL (device), pouzdro PC44 (package), rychlost 10 ns (speed grade).

V editoru schéma postupujte takto:

1) rozmístění "součástek"

Bloky čítače najdete v knihovně *counters*, napájecí napětí a zem v *general*, mezi výstup čítače a výstupní piny obvodu zařad'te invertor (knihovna *Logic*), klopný obvod je v knihovně *Flip-Flops*. Diody na přípravku svítí při logické nule na výstupu obvodu. Frekvenci pro 16 bitový čítač. Vstupní frekvenci obvodu vydělte 2 pomocí klopného obvodu typu D.

- 2) propojení obvodů vodičem
- 3) pojmenování vstupních a výstupních signálů
- 4) uložení souboru a ukončení editoru

Obr.2 – Schéma zapojení

B) Přiřazení vývodů

Pravým tlačítkem na volbě Assign package pins vyvolejte menu a vyberte Rerun All v záložce User Constrains. Tím dojde k přeložení projektu a spuštění editoru přiřazení vývodů. V editoru rozložení vývodů přiřaďte vstupní a výstupní vývody. Vstupní vývod (generátor hodinových impulsů) připojte na vstup P5 (na horní straně druhý zleva), výstupy na libovolné diody. Výsledek uložte a editor ukončete. V Project Navigatoru vyberte položku Generate programming file v založce Implement Design, pravým tlačítkem se vyvolá menu kde vyberte Rerun All. Tím se spustí závěrečná kompilace.

C) Naprogramování obvodu

Programovací software se spouští na pracovní ploše **ikonou Device programming**. V úvodním nastavení programátoru ponechejte přednastavené hodnoty (Boundary-Scan Mode a Automatically connect to cable). Automaticky dojde k nalezení obvodu XC9536XL a otevře se okno pro výběr souboru pro nahrání, kde vyberte vygenerovaný soubor s příponou .jed z příslušného adresáře. Vyberte symbol obvodu a z menu vyvolaného pravým tlačítkem vyberte Program... a potvrďte. Během asi 10 s dojde k naprogramování obvodu a okamžitému spuštění.

Další informace o programovatelných logických polích včetně možnosti bezplatného stáhnutí software WebPack naleznete na <u>http://www.xilinx.com/</u>