Transformers

 Transformers are stationary electrical machines which transmit energy from systems with certain current and voltage values into systems with generally different current and voltage values but with identical frequency

- Two separate windings are on the same iron core. Following connection to alternating voltage U1 there is a standstill current I. The magnetomotive force H = I₁ · N₁ generates a magnetic alternating flow (Φ₁) in the iron core.
- The input and output winding of an alternating voltage are induced in accordance with the induction law. A <u>self-induction</u> voltage U₁₀ arises in the input winding. It is counter-positioned in accordance with Lenz's law on applied voltage. During idling operation - because of mutual induction - there arises the output voltage U₂₀ which is simultaneously the terminal voltage U₂.

The value of the induced voltage is derived from the following equation:

$$U_0 = 4,44 * N * B * A_{Fe} * f$$

where:

U ₀	induction voltage
Ν	number of turns
В	max. flow density
A _{Fe}	limb cros-section
f	induction voltage frequency

The induction voltage increases along with the number of turns, the magnetic flow density in the iron core, the iron cross-section and the frequency.

Example:

Which maximum flow density occurs in an iron core of 16 cm² cross-section when a voltage of 380 V (50 Hz) is applied to the primary coil with 930 turns?

Given: $A_{Fe} = 16 \text{ cm}^2$; $N_1 = 930$; $U_1 = 380 \text{ V}$; f = 50 Hz

Solution: 1.15 T

Voltage transformation

A few field lines already close before reaching the output coil so that flow $\Phi_{\rm 1}$ can be divided into a maximum flow $\Phi_{\rm K}$ which saturates both coils and a leakage flow $\Phi_{\rm S}$

Voltage transformation

$$U_{10} = 4.44 . N_1 . \Phi_K . f$$

 $U_{20} = 4.44 . N_2 . \Phi_K . f$

Shortening (neglet leakage fluxes) gives us transformer ratio p:

$$p = \frac{U_1}{U_2} = \frac{N_1}{N_2}$$

Voltage transformation

The rated voltages

U_{1n} and U_{2n}

are indicated on the rating plate of the transformer

Example:

What secondary terminal voltage arises in a transformer where 380 V is applied to the primary winding of 980 turns and the secondary winding has 594 turns?

Given: $U_1 = 380 \text{ V}; \text{ N}_1 = 980; \text{ N}_2 = 594$

Sought: U₂

Solution: $U_2 = 230 \text{ V}$

If the transformer is output-loaded, current I_2 flows into coil N_2 . Current I_2 generates the magnetic flow Φ_{2K} . According to Lenz's Law this magnetic flow is counter-positioned to the cause (Φ_{1K}).

In this manner the magnet flow Φ_{1K} is weakened and induction voltage U_{10} decreases. Given uniform rated voltage, the difference increases between the two voltages U_{10} and U_1 .

Consequently, a greater input current I_1 flows whereby the magnetic flow Φ_{1K} is increased. The magnetic flow Φ in the iron core thus remains virtually constant:

 $\Phi_{\rm 1K} = \Phi_{\rm 1K} - \Phi_{\rm 2K} = {\rm constant}$

This also applies to the output voltage of the transformer.

The input current I_1 increases as the load current I_2 becomes greater.

Transformation ratio

Without heeded the losses of the transformer, the following applies according to the energy conservation law:

 $S_1 = S_2$ and $U_1 \cdot I_1 = U_2 \cdot I_2$

If we arrange the equation so that the voltage and current values appears on respective sides, then

$$\frac{I_1}{I_2} = \frac{U_2}{U_1} = \frac{N_2}{N_1} = \frac{1}{p}$$

Currents the are conversely proportional to the voltages or numbers of turns. A transformer converts high currents into low ones or low currents into higher ones.

Example:

A welding transformer takes up 220 (current being 10A). The output voltage is 20 V. How great is the welding current?

Solution:

 $I_2 = 110 V$

Idling behaviour

A transformer idles where mains voltage U_1 remains applied to the primary side whilst no consumer is connected to the secondary side

 $(Z_a = \infty).$

Primary circuit U₁ appliesI₀ flows (idling current) Secondary circuit $Z_a = \infty$, I₂ = 0, U₂ = U₂₀

Idling behaviour

Idling current I₀

The applied voltage U_{10} drives the idling current I_0 . This is needed to establish the magnetic field Φ . This lags behind the voltage U_1 .

Idling behaviour

 $U_{1n} \dots$ rated voltage

The value of idling current I_0 is between 2 and 5 % of rated current in big transformers and up to 15 % in smaller transformers

No-load curve

The idling curve $I_0 = f(U_{10})$ in Figure indicates that no-load current I_0 increases proportionally to the input voltage U_1 . No-load current increases markedly over and beyond the input rated speed U_{1n} . It can, moreover, even attain values greater than the rated current.

Transformers shall not be driven by voltages greater than the rated voltage U_{1n} .

Short-circuit behaviour

- <u>Short-circuit curves</u>
- Secondary current I_2 increases if load resistance is decreased. Where $Z_a = 0$ the transformer has been short-circuited.
- Primary circuit U_1 is applied I_K flows Secondary circuit $Z_a = 0$ $U_2 = 0$ Short-circuit voltage
- The short-circuited transformer can be replaced by resistor Z₁ which corresponds to the transformer internal resistor

Short-circuit behaviour

The relative short-circuit voltage u_{K} in % is determined by the following equation:

$$\boldsymbol{u}_{K}=\frac{\boldsymbol{U}_{K}}{\boldsymbol{U}_{1n}}100\%$$

The relative short-circuit voltage is, on average, 2 to 10% of input rated voltage (U_{1n}) in mains transformers

Short-circuit behaviour

Short-circuit losses (winding losses)

 In the short-circuit experiment a power meter indicates short-circuit losses as the primary and secondary rated currents generate winding losses. The iron core is only slightly magnetised by the applied short-circuit voltage

U_K << U₁

• The winding losses can be metered during the short-circuit experiment. They are dependent on the load current ($P_{VW} = I^2R$).

Loaded voltage behaviour

- In contrast to operational idling, during loading the secondary circuit is closed through an external resistance Z_a . Secondary current I_2 flows. According to the energy conservation law the transformer must also take up commensurate primary power, thus a primary current I_1 also flows.
- Primary circuit U_1 is applied $I_1 > I_0$ Secondary circuit $Z_a < \infty$ $I_2 > 0$ $U_2 < U_{20}$

Loaded voltage behaviour

- Voltage curve $U_2 = f(I_2)$
- As the curve in figure shows, terminal voltage U₂ decreases during loading.

 $1 u_{K}$ small, $2 u_{K}$ big

Loaded voltage behaviour

Secondary terminal voltage depending on the degree and nature of loading

1 Idling 2 Rated load

The output voltage of a transformer depends on the

- degree of load current I₂
- the magnitude of relative shortcircuit voltage
- the nature of the load (ohmic, inductive or capacitive).

Full equivalent circuit diagram

 $U'_{2} = p.U_{2}$ $L'_{2} = p^{2}.L_{2}$ $I'_{2} = 1/p.I_{2}$ $R'_{2} = p^{2}.R_{2}$