Transformers
Operating principle of a transformer

- Transformers are stationary electrical machines which transmit energy from systems with certain current and voltage values into systems with generally different current and voltage values but with identical frequency.
Operating principle of a transformer

• Two separate windings are on the same iron core. Following connection to alternating voltage U_1 there is a standstill current I. The magnetomotive force $H = I_1 \cdot N_1$ generates a magnetic alternating flow (Φ_1) in the iron core.

• The input and output winding of an alternating voltage are induced in accordance with the induction law. A self-induction voltage U_{10} arises in the input winding. It is counter-positioned in accordance with Lenz's law on applied voltage. During idling operation - because of mutual induction - there arises the output voltage U_{20} which is simultaneously the terminal voltage U_2.
Operating principle of a transformer

The value of the induced voltage is derived from the following equation:

\[U_0 = 4,44 \times N \times B \times A_{Fe} \times f \]

where:
- \(U_0 \) induction voltage
- \(N \) number of turns
- \(B \) max. flow density
- \(A_{Fe} \) limb cros-section
- \(f \) induction voltage frequency

The induction voltage increases along with the number of turns, the magnetic flow density in the iron core, the iron cross-section and the frequency.
Operating principle of a transformer

Example:
Which maximum flow density occurs in an iron core of 16 cm² cross-section when a voltage of 380 V (50 Hz) is applied to the primary coil with 930 turns?

Given: $A_{Fe} = 16 \text{ cm}^2$; $N_1 = 930$; $U_1 = 380 \text{ V}$; $f = 50 \text{ Hz}$

Solution: 1.15 T
Voltage transformation

A few field lines already close before reaching the output coil so that flow Φ_1 can be divided into a maximum flow Φ_K which saturates both coils and a leakage flow Φ_S.
Voltage transformation

\[U_{10} = 4.44 \cdot N_1 \cdot \Phi_K \cdot f \]

\[U_{20} = 4.44 \cdot N_2 \cdot \Phi_K \cdot f \]

Shortening (neglet leakage fluxes) gives us transformer ratio \(p \):

\[p = \frac{U_1}{U_2} = \frac{N_1}{N_2} \]
Voltage transformation

The rated voltages \(U_{1n} \) and \(U_{2n} \) are indicated on the rating plate of the transformer.

Example:
What secondary terminal voltage arises in a transformer where 380 V is applied to the primary winding of 980 turns and the secondary winding has 594 turns?

Given: \(U_1 = 380 \text{ V}; N_1 = 980; N_2 = 594 \)

Sought: \(U_2 \)

Solution: \(U_2 = 230 \text{ V} \)
Load behaviour of the transformer

If the transformer is output-loaded, current I_2 flows into coil N_2. Current I_2 generates the magnetic flow Φ_{2K}. According to Lenz's Law this magnetic flow is counter-positioned to the cause (Φ_{1K}).
Load behaviour of the transformer

In this manner the magnet flow Φ_{1K} is weakened and induction voltage U_{10} decreases. Given uniform rated voltage, the difference increases between the two voltages U_{10} and U_1.

Consequently, a greater input current I_1 flows whereby the magnetic flow Φ_{1K} is increased. The magnetic flow Φ in the iron core thus remains virtually constant:

$$\Phi_{1K} = \Phi_{1K} - \Phi_{2K} = \text{constant}$$

This also applies to the output voltage of the transformer.

The input current I_1 increases as the load current I_2 becomes greater.
Load behaviour of the transformer

Transformation ratio
Without heeded the losses of the transformer, the following applies according to the energy conservation law:

\[S_1 = S_2 \quad \text{and} \quad U_1 \cdot I_1 = U_2 \cdot I_2 \]

If we arrange the equation so that the voltage and current values appears on respective sides, then

\[\frac{I_1}{I_2} = \frac{U_2}{U_1} = \frac{N_2}{N_1} = \frac{1}{p} \]
Load behaviour of the transformer

Currents the are conversely proportional to the voltages or numbers of turns. A transformer converts high currents into low ones or low currents into higher ones.

Example:
A welding transformer takes up 220 (current being 10A). The output voltage is 20 V. How great is the welding current?
Solution:
$I_2 = 110$ V
Idling behaviour

A transformer idles where mains voltage U_1 remains applied to the primary side whilst no consumer is connected to the secondary side ($Z_a = \infty$).

Primary circuit U_1 applies I_0 flows (idling current)
Secondary circuit $Z_a = \infty$, $I_2 = 0$, $U_2 = U_{20}$
Idling behaviour

Idling current I_0

The applied voltage U_{10} drives the idling current I_0. This is needed to establish the magnetic field Φ. This lags behind the voltage U_1.
Idling behaviour

The value of idling current I_0 is between 2 and 5 % of rated current in big transformers and up to 15 % in smaller transformers.
No-load curve

The idling curve $I_0 = f(U_{10})$ in Figure indicates that no-load current I_0 increases proportionally to the input voltage U_1. No-load current increases markedly over and beyond the input rated speed U_{1n}. It can, moreover, even attain values greater than the rated current.

Transformers shall not be driven by voltages greater than the rated voltage U_{1n}.
Short-circuit behaviour

- **Short-circuit curves**
- Secondary current I_2 increases if load resistance is decreased. Where $Z_a = 0$ the transformer has been short-circuited.
- Primary circuit U_1 is applied
 I_K flows
 Secondary circuit $Z_a = 0$
 $U_2 = 0$ Short-circuit voltage
- The short-circuited transformer can be replaced by resistor Z_1 which corresponds to the transformer internal resistor
Short-circuit behaviour

The relative short-circuit voltage u_K in % is determined by the following equation:

$$u_K = \frac{U_K}{U_{1n}} \times 100\%$$

The relative short-circuit voltage is, on average, 2 to 10% of input rated voltage (U_{1n}) in mains transformers.
Short-circuit behaviour

Short-circuit losses (winding losses)

• In the short-circuit experiment a power meter indicates short-circuit losses as the primary and secondary rated currents generate winding losses. The iron core is only slightly magnetised by the applied short-circuit voltage

\[U_k \ll U_1 \]

• The winding losses can be metered during the short-circuit experiment. They are dependent on the load current \(P_{ww} = I^2R \).
Loaded voltage behaviour

• In contrast to operational idling, during loading the secondary circuit is closed through an external resistance Z_a. Secondary current I_2 flows. According to the energy conservation law the transformer must also take up commensurate primary power, thus a primary current I_1 also flows.

• Primary circuit U_1 is applied
 $I_1 > I_0$ Secondary circuit $Z_a < \infty$
 $I_2 > 0$
 $U_2 < U_{20}$
Loaded voltage behaviour

- Voltage curve $U_2 = f(I_2)$
- As the curve in figure shows, terminal voltage U_2 decreases during loading.

1 u_K small, 2 u_K big
Loaded voltage behaviour

Secondary terminal voltage depending on the degree and nature of loading

1. Idling
2. Rated load

The output voltage of a transformer depends on the
- degree of load current I_2
- the magnitude of relative short-circuit voltage
- the nature of the load (ohmic, inductive or capacitive).
Full equivalent circuit diagram

\[U'_2 = p \cdot U_2 \]
\[L'_2 = p^2 \cdot L_2 \]
\[I'_2 = \frac{1}{p} \cdot I_2 \]
\[R'_2 = p^2 \cdot R_2 \]